not done yet. Once the subject provides its credentials and is properly identified, the system it is trying to access needs to determine if this subject has been given the necessary rights and privileges to carry out the requested actions. The system will look at some type of access control matrix or compare security labels to verify that this subject may indeed access the requested resource and perform the actions it is attempting. If the system determines that the subject may access the resource, it authorizes the subject.

Although identification, authentication, authorization, and accountability have close and complementary definitions, each has distinct functions that fulfill a specific requirement in the process of access control. A user may be properly identified and authenticated to the network, but he may not have the authorization to access the files on the file server. On the other hand, a user may be authorized to access the files on the file server, but until she is properly identified and authenticated, those resources are out of reach.

Reference(s) used for this question:

Schneiter, Andrew (2013-04-15). Official (ISC)2 Guide to the CISSP CBK, Third Edition: Access Control ((ISC)2 Press) (Kindle Locations 889-892). Auerbach Publications. Kindle Edition. Harris, Shon (2012-10-25). CISSP All-in-One Exam Guide, 6th Edition (Kindle Locations 3875-3878). McGraw-Hill. Kindle Edition.

Harris, Shon (2012-10-25). CISSP All-in-One Exam Guide, 6th Edition (Kindle Locations 3833-3848). McGraw-Hill. Kindle Edition.

Source: KRUTZ, Ronald L.& VINES, Russel D., The CISSP Prep Guide: Mastering the Ten Domains of Computer Security, 2001, John Wiley & Sons, Page 36.

QUESTION 101

To control access by a subject (an active entity such as individual or process) to an object (a passive entity such as a file) involves setting up:

- A. Access Rules
- B. Access Matrix
- C. Identification controls
- D. Access terminal

Correct Answer: A Explanation:

Controlling access by a subject (an active entity such as individual or process) to an object (a passive entity such as a file) involves setting up access rules.

These rules can be classified into three access control models: Mandatory, Discretionary, and Non-Discretionary.

An access matrix is one of the means used to implement access control.

Source: KRUTZ, Ronald L.& VINES, Russel D., The CISSP Prep Guide: Mastering the Ten Domains of Computer Security, 2001, John Wiley & Sons, Page 33.

QUESTION 102

Access Control techniques do not include which of the following choices?

- A. Relevant Access Controls
- B. Discretionary Access Control
- C. Mandatory Access Control

D. Lattice Based Access Control

Correct Answer: A Explanation:

Access Control Techniques
Discretionary Access Control
Mandatory Access Control
Lattice Based Access Control
Rule-Based Access Control
Role-Based Access Control

Source: DUPUIS, Clement, Access Control Systems and Methodology, Version 1, May 2002, CISSP Open Study Group Study Guide for Domain 1, Page 13.

QUESTION 103

Which type of control is concerned with avoiding occurrences of risks?

- A. Deterrent controls
- B. Detective controls
- C. Preventive controls
- D. Compensating controls

Correct Answer: C **Explanation:**

Preventive controls are concerned with avoiding occurrences of risks while deterrent controls are concerned with discouraging violations. Detecting controls identify occurrences and compensating controls are alternative controls, used to compensate weaknesses in other controls. Supervision is an example of compensating control. Source: TIPTON, Hal, (ISC)2, Introduction to the CISSP Exam presentation.

QUESTION 104

In the Bell-LaPadula model, the Star-property is also called:

- A. The simple security property
- B. The confidentiality property
- C. The confinement property
- D. The tranquility property

Correct Answer: B Explanation:

The Bell-LaPadula model focuses on data confidentiality and access to classified information, in contrast to the Biba Integrity Model which describes rules for the protection of data integrity.

In this formal model, the entities in an information system are divided into subjects and objects.

The notion of a "secure state" is defined, and it is proven that each state transition preserves security by moving from secure state to secure state, thereby proving that the system satisfies the security objectives of the model.

The Bell-LaPadula model is built on the concept of a state machine with a set of allowable states in a system. The transition from one state to another state is defined by transition functions.

A system state is defined to be "secure" if the only permitted access modes of subjects to objects are in accordance with a security policy.

To determine whether a specific access mode is allowed, the clearance of a subject is compared to the classification of the object (more precisely, to the combination of classification and set of compartments, making up the security level) to determine if the subject is authorized for the specific access mode.

The clearance/classification scheme is expressed in terms of a lattice. The model defines two mandatory access control (MAC) rules and one discretionary access control (DAC) rule with three security properties:

The Simple Security Property - a subject at a given security level may not read an object at a higher security level (no read-up).

The property (read "star"-property) - a subject at a given security level must not write to any object at a lower security level (no write-down). The property is also known as the Confinement property.

The Discretionary Security Property - use an access control matrix to specify the discretionary access control.

The transfer of information from a high-sensitivity document to a lower-sensitivity document may happen in the Bell-LaPadula model via the concept of trusted subjects. Trusted Subjects are not restricted by the property. Untrusted subjects are.

Trusted Subjects must be shown to be trustworthy with regard to the security policy. This security model is directed toward access control and is characterized by the phrase: "no read up, no write down." Compare the Biba model, the Clark-Wilson model and the Chinese Wall.

With Bell-LaPadula, users can create content only at or above their own security level (i.e. secret researchers can create secret or top-secret files but may not create public files; no write-down). Conversely, users can view content only at or below their own security level (i.e. secret researchers can view public or secret files, but may not view top-secret files; no read-up).

Strong Property

The Strong Property is an alternative to the Property in which subjects may write to objects with only a matching security level. Thus, the write-up operation permitted in the usual Property is not present, only a write-to-same level operation. The Strong Property is usually discussed in the context of multilevel database management systems and is motivated by integrity concerns.

Tranquility principle

The tranquility principle of the Bell-LaPadula model states that the classification of a subject or object does not change while it is being referenced. There are two forms to the tranquility principle: the "principle of strong tranquility" states that security levels do not change during the normal operation of the system and the "principle of weak tranquility" states that security levels do not change in a way that violates the rules of a given security policy.

Another interpretation of the tranquility principles is that they both apply only to the period of time during which an operation involving an object or subject is occurring. That is, the strong tranquility principle means that an object's security level/label will not change during an operation (such as read or write); the weak tranquility principle means that an object's security level/label may change in a way that does not violate the security policy during an operation.

Reference(s) used for this question:

http://en.wikipedia.org/wiki/Biba Model

http://en.wikipedia.org/wiki/Mandatory_access_control http://en.wikipedia.org/wiki/Discretionary_access_control http://en.wikipedia.org/wiki/Clark-Wilson_model http://en.wikipedia.org/wiki/Brewer and Nash model

QUESTION 105

Which of the following is the FIRST step in protecting data's confidentiality?

- A. Install a firewall
- B. Implement encryption
- C. Identify which information is sensitive
- D. Review all user access rights

Correct Answer: C **Explanation**:

In order to protect the confidentiality of the data.

The following answers are incorrect because:

Install a firewall is incorrect as this would come after the information has been identified for sensitivity levels.

Implement encryption is also incorrect as this is one of the mechanisms to protect the data once it has been identified.

Review all user access rights is also incorrect as this is also a protection mechanism for the identified information.

Reference: Shon Harris AlO v3, Chapter-4: Access Control, Page: 126

QUESTION 106

What is called the act of a user professing an identity to a system, usually in the form of a log-on ID?

- A. Authentication
- B. Identification
- C. Authorization
- D. Confidentiality

Correct Answer: B Explanation:

Identification is the act of a user professing an identity to a system, usually in the form of a log-on ID to the system.

Identification is nothing more than claiming you are somebody. You identify yourself when you speak to someone on the phone that you don't know, and they ask you who they're speaking to. When you say, "I'm Jason.", you've just identified yourself.

In the information security world, this is analogous to entering a username. It's not analogous to entering a password. Entering a password is a method for verifying that you are who you identified yourself as.

NOTE: The word "professing" used above means: "to say that you are, do, or feel something when other people doubt what you say". This is exactly what happen when you provide your identifier (identification), you claim to be someone but the system cannot take your word for it,

you must further Authenticate to the system to prove who you claim to be.

The following are incorrect answers:

Authentication: is how one proves that they are who they say they are. When you claim to be Jane Smith by logging into a computer system as "jsmith", it's most likely going to ask you for a password. You've claimed to be that person by entering the name into the username field (that's the identification part), but now you have to prove that you are really that person.

Many systems use a password for this, which is based on "something you know", i.e. a secret between you and the system.

Another form of authentication is presenting something you have, such as a driver's license, an RSA token, or a smart card.

You can also authenticate via something you are. This is the foundation for biometrics. When you do this, you first identify yourself and then submit a thumb print, a retina scan, or another form of bio-based authentication.

Once you've successfully authenticated, you have now done two things: you've claimed to be someone, and you've proven that you are that person. The only thing that's left is for the system to determine what you're allowed to do.

Authorization: is what takes place after a person has been both identified and authenticated; it's the step determines what a person can then do on the system.

An example in people terms would be someone knocking on your door at night. You say, "Who is it?", and wait for a response. They say, "It's John." in order to identify themselves. You ask them to back up into the light so you can see them through the peephole. They do so, and you authenticate them based on what they look like (biometric). At that point you decide they can come inside the house.

If they had said they were someone you didn't want in your house (identification), and you then verified that it was that person (authentication), the authorization phase would not include access to the inside of the house.

Confidentiality: Is one part of the CIA triad. It prevents sensitive information from reaching the wrong people, while making sure that the right people can in fact get it. A good example is a credit card number while shopping online, the merchant needs it to clear the transaction but you do not want your information exposed over the network, you would use a secure link such as SSL, TLS, or some tunneling tool to protect the information from prying eyes between point A and point

B.Data encryption is a common method of ensuring confidentiality.

The other parts of the CIA triad are listed below:

Integrity involves maintaining the consistency, accuracy, and trustworthiness of data over its entire life cycle. Data must not be changed in transit, and steps must be taken to ensure that data cannot be altered by unauthorized people (for example, in a breach of confidentiality). In addition, some means must be in place to detect any changes in data that might occur as a result of non-human-caused events such as an electromagnetic pulse (EMP) or server crash. If an unexpected change occurs, a backup copy must be available to restore the affected data to its correct state.

Availability is best ensured by rigorously maintaining all hardware, performing hardware repairs immediately when needed, providing a certain measure of redundancy and failover, providing adequate communications bandwidth and preventing the occurrence of bottlenecks, implementing emergency backup power systems, keeping current with all necessary system