QUESTION 26

Which of the following statements pertaining to Kerberos is false?

- A. The Key Distribution Center represents a single point of failure.
- B. Kerberos manages access permissions.
- C. Kerberos uses a database to keep a copy of all users' public keys.
- D. Kerberos uses symmetric key cryptography.

Correct Answer: C Explanation:

Kerberos is a trusted, credential-based, third-party authentication protocol that uses symmetric (secret) key cryptography to provide robust authentication to clients accessing services on a network.

One weakness of Kerberos is its Key Distribution Center (KDC), which represents a single point of failure.

The KDC contains a database that holds a copy of all of the symmetric/secret keys for the principals.

Reference(s) used for this question:

KRUTZ, Ronald L.& VINES, Russel D., The CISSP Prep Guide: Mastering the Ten Domains of Computer Security, John Wiley & Sons, 2001, Chapter 2: Access control systems (page40).

QUESTION 27

Pin, Password, Passphrases, Tokens, smart cards, and biometric devices are all items that can be used for Authentication. When one of these item listed above in conjunction with a second factor to validate authentication, it provides robust authentication of the individual by practicing which of the following?

- A. Multi-party authentication
- B. Two-factor authentication
- C. Mandatory authentication
- D. Discretionary authentication

Correct Answer: B **Explanation:**

Once an identity is established it must be authenticated. There exist numerous technologies and implementation of authentication methods however they almost all fall under three major areas.

There are three fundamental types of authentication:

Authentication by knowledge--something a person knows Authentication by possession--something a person has Authentication by characteristic--something a person is Logical controls related to these types are called "factors."

Something you know can be a password or PIN, something you have can be a token fob or smart card, and something you are is usually some form of biometrics.

Single-factor authentication is the employment of one of these factors, two-factor authentication is using two of the three factors, and three-factor authentication is the combination of all three factors.

The general term for the use of more than one factor during authentication is multifactor

authentication or strong authentication.

Reference(s) used for this question:

Hernandez CISSP, Steven (2012-12-21). Official (ISC)2 Guide to the CISSP CBK, Third Edition ((ISC)2 Press) (Kindle Locations 2367-2379). Auerbach Publications. Kindle Edition.

QUESTION 28

The number of violations that will be accepted or forgiven before a violation record is produced is called which of the following?

- A. clipping level
- B. acceptance level
- C. forgiveness level
- D. logging level

Correct Answer: A Explanation:

The correct answer is "clipping level". This is the point at which a system decides to take some sort of action when an action repeats a preset number of times. That action may be to log the activity, lock a user account, temporarily close a port, etc.

Example: The most classic example of a clipping level is failed login attempts. If you have a system configured to lock a user's account after three failed login attemts, that is the "clipping level".

The other answers are not correct because:

Acceptance level, forgiveness level, and logging level are nonsensical terms that do not exist (to my knowledge) within network security.

Reference:

Official ISC2 Guide - The term "clipping level" is not in the glossary or index of that book. I cannot find it in the text either. However, I'm quite certain that it would be considered part of the CBK, despite its exclusion from the Official Guide.

All in One Third Edition page: 136 - 137

QUESTION 29

Controls to keep password sniffing attacks from compromising computer systems include which of the following?

- A. static and recurring passwords.
- B. encryption and recurring passwords.
- C. one-time passwords and encryption.
- D. static and one-time passwords.

Correct Answer: C **Explanation:**

To minimize the chance of passwords being captured one-time passwords would prevent a password sniffing attack because once used it is no longer valid. Encryption will also minimize these types of attacks.

The following answers are correct:

static and recurring passwords. This is incorrect because if there is no encryption then someone password sniffing would be able to capture the password much easier if it never changed.

encryption and recurring passwords. This is incorrect because while encryption helps, recurring passwords do nothing to minimize the risk of passwords being captured.

static and one-time passwords. This is incorrect because while one-time passwords will prevent these types of attacks, static passwords do nothing to minimize the risk of passwords being captured.

QUESTION 30

In non-discretionary access control using Role Based Access Control (RBAC), a central authority determines what subjects can have access to certain objects based on the organizational security policy. The access controls may be based on:

- A. The societies role in the organization
- B. The individual's role in the organization
- C. The group-dynamics as they relate to the individual's role in the organization
- D. The group-dynamics as they relate to the master-slave role in the organization

Correct Answer: B Explanation:

In Non-Discretionary Access Control, when Role Based Access Control is being used, a central authority determines what subjects can have access to certain objects based on the organizational security policy. The access controls may be based on the individual's role in the organization.

Reference(S) used for this question:

KRUTZ, Ronald L.& VINES, Russel D., The CISSP Prep Guide: Mastering the Ten Domains of Computer Security, 2001, John Wiley & Sons, Page 33.

QUESTION 31

Examples of types of physical access controls include all EXCEPT which of the following?

- A. badges
- B. locks
- C. quards
- D. passwords

Correct Answer: D

Explanation:

Passwords are considered a Preventive/Technical (logical) control.

The following answers are incorrect:

badges Badges are a physical control used to identify an individual. A badge can include a smart device which can be used for authentication and thus a Technical control, but the actual badge itself is primarily a physical control.

locks Locks are a Preventative Physical control and has no Technical association. guards Guards are a Preventative Physical control and has no Technical association.

The following reference(s) were/was used to create this question:

Source: KRUTZ, Ronald L.& VINES, Russel D., The CISSP Prep Guide: Mastering the Ten Domains of Computer Security, John Wiley & Sons, 2001, Chapter 2: Access control systems (page 35).

QUESTION 32

Which of the following is NOT a type of motion detector?

- A. Photoelectric sensor
- B. Passive infrared sensors
- C. Microwave Sensor.
- D. Ultrasonic Sensor.

Correct Answer: A Explanation:

A photoelectric sensor does not "directly" sense motion there is a narrow beam that won't set off the sensor unless the beam is broken. Photoelectric sensors, along with dry contact switches, are a type of perimeter intrusion detector.

All of the other answers are valid types of motion detectors types.

The content below on the different types of sensors is from Wikepedia: Indoor Sensors

These types of sensors are designed for indoor use. Outdoor use would not be advised due to false alarm vulnerability and weather durability. Passive infrared detectors

Passive Infrared Sensor

The passive infrared detector (PIR) is one of the most common detectors found in household and small business environments because it offers affordable and reliable functionality. The term passive means the detector is able to function without the need to generate and radiate its own energy (unlike ultrasonic and microwave volumetric intrusion detectors that are "active" in operation). PIRs are able to distinguish if an infrared emitting object is present by first learning the ambient temperature of the monitored space and then detecting a change in the temperature caused by the presence of an object. Using the principle of differentiation, which is a check of presence or nonpresence, PIRs verify if an intruder or object is actually there. Creating individual zones of detection where each zone comprises one or more layers can achieve differentiation. Between the zones there are areas of no sensitivity (dead zones) that are used by the sensor for comparison.

Ultrasonic detectors

Using frequencies between 15 kHz and 75 kHz, these active detectors transmit ultrasonic sound waves that are inaudible to humans. The Doppler shift principle is the underlying method of operation, in which a change in frequency is detected due to object motion. This is caused when a moving object changes the frequency of sound waves around it. Two conditions must occur to successfully detect a Doppler shift event:

There must be motion of an object either towards or away from the receiver. The motion of the object must cause a change in the ultrasonic frequency to the receiver relative to the transmitting frequency.

The ultrasonic detector operates by the transmitter emitting an ultrasonic signal into the area to be protected. The sound waves are reflected by solid objects (such as the surrounding floor, walls and ceiling) and then detected by the receiver. Because ultrasonic waves are transmitted through air, then hard-surfaced objects tend to reflect most of the ultrasonic energy, while soft surfaces tend to absorb most energy.

When the surfaces are stationary, the frequency of the waves detected by the receiver will be equal to the transmitted frequency. However, a change in frequency will occur as a result of the Doppler principle, when a person or object is moving towards or away from the detector. Such an event initiates an alarm signal. This technology is considered obsolete by many alarm professionals, and is not actively installed.

Microwave detectors

This device emits microwaves from a transmitter and detects any reflected microwaves or reduction in beam intensity using a receiver. The transmitter and receiver are usually combined inside a single housing (monostatic) for indoor applications, and separate housings (bistatic) for outdoor applications. To reduce false alarms this type of detector is usually combined with a passive infrared detector or "Dualtec" alarm.

Microwave detectors respond to a Doppler shift in the frequency of the reflected energy, by a phase shift, or by a sudden reduction of the level of received energy. Any of these effects may indicate motion of an intruder.

Photo-electric beams

Photoelectric beam systems detect the presence of an intruder by transmitting visible or infrared light beams across an area, where these beams may be obstructed. To improve the detection surface area, the beams are often employed in stacks of two or more. However, if an intruder is aware of the technology's presence, it can be avoided. The technology can be an effective long-range detection system, if installed in stacks of three or more where the transmitters and receivers are staggered to create a fence-like barrier. Systems are available for both internal and external applications. To prevent a clandestine attack using a secondary light source being used to hold the detector in a 'sealed' condition whilst an intruder passes through, most systems use and detect a modulated light source.

Glass break detectors

The glass break detector may be used for internal perimeter building protection. When glass breaks it generates sound in a wide band of frequencies. These can range from infrasonic, which is below 20 hertz (Hz) and can not be heard by the human ear, through the audio band from 20 Hz to 20 kHz which humans can hear, right up to ultrasonic, which is above 20 kHz and again cannot be heard. Glass break acoustic detectors are mounted in close proximity to the glass panes and listen for sound frequencies associated with glass breaking. Seismic glass break detectors are different in that they are installed on the glass pane. When glass breaks it produces specific shock frequencies which travel through the glass and often through the window frame and the surrounding walls and ceiling. Typically, the most intense frequencies generated are between 3 and 5 kHz, depending on the type of glass and the presence of a plastic interlayer. Seismic glass break detectors "feel" these shock frequencies and in turn generate an alarm