

Vendor: Oracle

Exam Code: 1Z0-051

Exam Name: Oracle Database 11g: SQL Fundamentals I

Version: DEMO

QUESTION 1

Which is the valid CREATE TABLE statement?

- A. CREATE TABLE emp9\$# (emp_no NUMBER (4));
- B. CREATE TABLE 9emp\$# (emp_no NUMBER(4));
- C. CREATE TABLE emp*123 (emp_no NUMBER(4));
- D. CREATE TABLE emp9\$# (emp_no NUMBER(4), date DATE);

Answer: A

QUESTION 2

Which two statements are true regarding tables? (Choose two.)

- A. A table name can be of any length.
- B. A table can have any number of columns.
- C. A column that has a DEFAULT value cannot store null values.
- D. A table and a view can have the same name in the same schema.
- E. A table and a synonym can have the same name in the same schema.
- F. The same table name can be used in different schemas in the same database.

Answer: EF

QUESTION 3

Which two statements are true regarding constraints? (Choose two.)

- A. A foreign key cannot contain NULL values.
- B. A column with the UNIQUE constraint can contain NULL values.
- C. A constraint is enforced only for the INSERT operation on a table.
- D. A constraint can be disabled even if the constraint column contains data.
- E. All constraints can be defined at the column level as well as the table level.

Answer: BD

QUESTION 4

Which two statements are true regarding constraints? (Choose two.)

- A. A foreign key cannot contain NULL values.
- B. The column with a UNIQUE constraint can store NULLS .
- C. A constraint is enforced only for an INSERT operation on a table.
- D. You can have more than one column in a table as part of a primary key.

Answer: BD

QUESTION 5

Evaluate the following CREATE TABLE commands:

```
CREATE TABLE orders
(ord_no NUMBER(2) CONSTRAINT ord_pk PRIMARY KEY,
ord date DATE,
```

cust_id NUMBER(4)); CREATE TABLE ord_items (ord_no NUMBER(2), item_no NUMBER(3), qty NUMBER(3) CHECK (qty BETWEEN 100 AND 200), expiry_date date CHECK (expiry_date > SYSDATE), CONSTRAINT it_pk PRIMARY KEY (ord_no,item_no), CONSTRAINT ord fk FOREIGN KEY(ord no) REFERENCES orders(ord no));

The above command fails when executed. What could be the reason?

- A. SYSDATE cannot be used with the CHECK constraint.
- B. The BETWEEN clause cannot be used for the CHECK constraint.
- C. The CHECK constraint cannot be placed on columns having the DATE data type.
- D. ORD_NO and ITEM_NO cannot be used as a composite primary key because ORD_NO is also the FOREIGN KEY.

Answer: A

QUESTION 6

Evaluate the following SQL commands:

```
SQL>CREATE SEQUENCE ord_seq
INCREMENT BY 10
START WITH 120
MAXVALUE 9999
NOCYCLE;
SQL>CREATE TABLE ord_items
(ord_no NUMBER(4) DEFAULT ord_seq.NEXTVAL NOT NULL,
item_no NUMBER(3),
qty NUMBER(3) CHECK (qty BETWEEN 100 AND 200),
expiry_date date CHECK (expiry_date > SYSDATE),
CONSTRAINT it_pk PRIMARY KEY (ord_no,item_no),
CONSTRAINT ord_fk FOREIGN KEY(ord_no) REFERENCES orders(ord_no));
```

The command to create a table fails. Identify the reason for the SQL statement failure? (Choose all that apply.)

- A. You cannot use SYSDATE in the condition of a CHECK constraint.
- B. You cannot use the BETWEEN clause in the condition of a CHECK constraint.
- C. You cannot use the NEXTVAL sequence value as a DEFAULT value for a column.
- D. You cannot use ORD_NO and ITEM_NO columns as a composite primary key because ORD_NO is also the FOREIGN KEY.

Answer: AC

QUESTION 7

Examine the structure and data in the PRICE_LIST table:

name	Null	Туре
PROD_ID	NOT NULL	NUMBER(3)

PROD_PRICE

VARCHAR2(10)

 PROD_ID
 PROD_PRICE

 100
 \$234.55

 101
 \$6,509.75

 102
 \$1,234

You plan to give a discount of 25% on the product price and need to display the discount amount in the same format as the PROD_PRICE. Which SQL statement would give the required result?

- A. SELECT TO_CHAR(prod_price* .25, '\$99,999.99') FROM PRICE_LIST;
- B. SELECT TO_CHAR(TO_NUMBER(prod_price)* .25,'\$99,999.00') FROM PRICE_LIST;
- C. SELECT TO_CHAR(TO_NUMBER(prod_price, '\$99,999.99')* .25, '\$99,999.00') FROM PRICE_LIST;
- D. SELECT TO_NUMBER(TO_NUMBER(prod_price, '\$99,999.99')* .25, '\$99,999.00') FROM PRICE_LIST;

Answer: C

QUESTION 9

Examine the structure of the PROGRAMS table:

name	Null	Туре
PROG_ID PROG_COST	NOT NULL	NUMBER(3) NUMBER(8,2)
START_DATE	NOT NULL	DATE
END_DATE DATE		

Which two SQL statements would execute successfully? (Choose two.)

- A. SELECT NVL(ADD_MONTHS(END_DATE,1),SYSDATE) FROM programs;
- B. SELECT TO_DATE(NVL(SYSDATE-END_DATE,SYSDATE)) FROM programs;
- C. SELECT NVL(MONTHS_BETWEEN(start_date,end_date),'Ongoing') FROM programs;
- D. SELECT NVL(TO_CHAR(MONTHS_BETWEEN(start_date,end_date)),'Ongoing') FROM programs;

Answer: AD

QUESTION 10 The PRODUCTS table has the following structure:

name	Null	Туре
PROD_ID	NOT NULL	NUMBER(4)
PROD_NAME		VARCHAR2(25)
PROD_EXPIRY_DATE		DATE

Evaluate the following two SQL statements:

```
SQL>SELECT prod_id, NVL2(prod_expiry_date, prod_expiry_date + 15,'')
FROM products;
SQL>SELECT prod_id, NVL(prod_expiry_date, prod_expiry_date + 15)
FROM products;
```

Which statement is true regarding the outcome?

- A. Both the statements execute and give different results.
- B. Both the statements execute and give the same result.
- C. Only the first SQL statement executes successfully.
- D. Only the second SQL statement executes successfully.

Answer: A